Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Environ Contam Toxicol ; 86(2): 140-151, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324021

RESUMEN

The aim of this work was to relate the contribution of mine-derived airborne particulate matter to Ca, Fe, Mn and S content and distribution in Punctelia hypoleucites transplanted to Bajo de la Alumbrera, an important open-pit mine in Catamarca, Argentina. Lichen samples were transplanted to four monitoring sites: two sites inside the mine perimeter and two sites outside the mine. After three months, elemental distribution in samples was analyzed by microparticle-induced X-ray emission (microPIXE), and elemental concentration was determined by specific techniques: Ca and Fe by instrumental neutron activation analysis, Mn by inductively coupled plasma atomic emission spectrometry and S by a turbidimetric method. A differential distribution of S and Ca in thalli transplanted in-mine sites was detected compared to that of samples transplanted outside-mine sites. An overlap of Fe and S in the upper cortex of the apothecium section was observed, leading to infer a mineral association of both elements. Similar association was observed for Ca and S. In addition to these results, the significantly higher concentration detected for S and Mn in in-mine site samples suggests a contribution of Fe, S, Ca and Mn of mining origin to the content and distribution of these elements in P. hypoleucites. MicroPIXE complemented with Mössbauer spectroscopy analysis determined the presence of pyrite particles together with other iron-bearing minerals displaying different degrees of oxidation. These results point to a mining origin of the airborne particulate matter trapped by the lichen thalli transplanted to Bajo de la Alumbrera. These findings indicate that P. Hypoleucites acts as an excellent air quality biomonitor in the Bajo de la Alumbrera mine area.


Asunto(s)
Líquenes , Parmeliaceae , Material Particulado/análisis , Líquenes/química , Argentina , Minerales/análisis , Monitoreo del Ambiente/métodos
3.
Colloids Surf B Biointerfaces ; 207: 112027, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34388613

RESUMEN

Purified myelin membranes (PMM) were spread as monomolecular films at the air/aqueous solution interface, and visualized by Brewster Angle Microscopy (BAM) at different lateral pressures (π) on three specific aqueous solutions: absence of salts, physiological conditions and presence of calcium. Coexistence of Liquid-Expanded (LE) and Liquid Ordered (LO) phases persisted up to collapse in the presence of salts, whereas monolayers became homogeneous at π ≥ 35-40 mN/m when salts are absent. This PMM phase-mixing behavior in monolayers is similar to the previously reported behavior of PMM multilamellar vesicles. Reflectivities (Rp) of p-polarized light from both phases were assessed throughout the whole π -range, and film thicknesses (t) were calculated from the Rp values and measured film refractive indices (n). The LO phase was found to be more reflective and thicker than the LE phase at π ≤ 15 mN/m, but less reflective and thinner at higher π. We also determined the line tension (λ) of PMM monolayers at the domain boundaries from the rate of domain shape relaxation, which turned out to be of the order of picoNewtons (pN) and decreased as π increased. A correlation between λ and thickness differences (Δt) was found, suggesting that Δt is a molecular determinant for λ in PMM monolayers. Both λ and Δt were found to increase markedly when calcium was present in the subphase. This result corroborates the concept of divalent cations as a stabilizing factor for phase separation, in line with earlier studies on this mixture forming multilamellar membrane arrangements.


Asunto(s)
Vaina de Mielina , Agua , Microscopía , Presión , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...